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Abstract— The Department of Energy Office of Electricity 
Delivery and Energy Reliability (DOE-OE) has a critical mission 
to secure the energy infrastructure from cyber-attack.  Through 
the DOE-OE Cyber Security for Energy Delivery Systems 
(CEDS) program, Idaho National Laboratory (INL) has 
developed a method to detect malicious traffic on Supervisory, 
Control, and Data Acquisition (SCADA) networks using a data 
compression technique.  SCADA network traffic is often 
repetitive with only minor differences between packets.  Research 
performed at INL indicates that SCADA network traffic has 
traits desirable for using compression analysis to identify 
abnormal network traffic.  An open source implementation of a 
Lempel-Ziv-Welch (LZW) lossless data compression algorithm 
was used to compress and analyze surrogate SCADA traffic.  
Infected SCADA traffic was found to have statistically significant 
differences in compression when compared against normal 
SCADA traffic at the packet level.  The initial analyses and 
results are clearly able to identify malicious network traffic from 
normal traffic at the packet level with a very high confidence 
level across multiple ports and traffic streams.  Statistical 
differentiation between infected and normal traffic level was 
possible using a modified data compression technique at the 99% 
probability level for all data analyzed.  The conditions tested 
were limited in scope and should be expanded to include more 
realistic simulations of hacking events using techniques and 
approaches that are better representative of a real-world attack 
on a SCADA system.  Nonetheless, the use of compression 
techniques to identify malicious traffic on SCADA networks in 
real time appears to have significant merit for infrastructure 
protection. 
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I.  INTRODUCTION  
Securing the country’s energy sector infrastructure from 

cyber-attack is critical to the well-being of the American 
people and is a central focus to the Department of Energy 
(DOE) Office of Electricity Delivery and Energy Reliability 
(OE) Cybersecurity for Energy Delivery Systems (CEDS) 
program [1]. The DOE program aims to enhance the reliability 
and resilience of the nation’s energy infrastructure by reducing 
the risk of energy disruptions due to cyber-attacks [2].  The 
purpose INL’s work in the SCADA (Supervisory Control and 
Data Acquisition) Protocol Anomaly Detection Utilizing 
Compression (SPADUC) project was to investigate if and how 

data compression algorithms could be used to identify 
cyber-attacks on SCADA networks.  SCADA systems 
operating over network protocols typically contain several 
static layers of headers. The ratio of the packet header size to 
the control or response data is often very high. Moreover, the 
number of header types is often limited because of the 
repetitive nature of SCADA communications. Control of 
hardware and system status of actuators and sensors generally 
occur in regularly timed sequences. Therefore, network traffic 
on dedicated SCADA systems and at the boundaries of 
SCADA systems where data transfer are moved to historian 
and trending functions, tend to be of a monotonous nature. 
Because large portions of the transmission control protocol 
(TCP)/internet protocol (IP) message traffic are repetitive, the 
concept of using compression techniques to differentiate traffic 
that is “non-normal” was proposed as a way to identify and 
quarantine malicious traffic at the packet level before its 
payload is completed. An open source implementation of a 
Lempel-Ziv-Welch (LZW) lossless data compression algorithm 
[3,4] was also proposed to analyze surrogate but typical 
SCADA network traffic and ascertain if malicious traffic could 
be differentiated from normal SCADA traffic. 

LZW compression is a well-known and mature technology 
used to compress data of any sort (binary or ASCII). It is the 
method used by commercial product WinZip in the personal 
computer world. LZW algorithms compress data by using a 
dictionary technique to store repetitive sequences of bytes as 
they occur in the data stream. The dictionary is initialized with 
a default set of entities that usually consists of the 256 ASCII 
character set as a starting block. When data are compressed, 
this dictionary is updated every time a new sequence of 
characters is encountered.  So, for example, in a Word 
document that contains many repeated words, a dictionary 
entry can be created for the word “tomorrow.”  In this manner, 
“tomorrow,” which is 8 bytes (or 64 bits), can be represented 
by as few bits (say 10 bits for example). The compression of 
this word is 10/64 and is 16% the size of the original entity. 

Initial research showed that SCADA network traffic has 
traits desirable for using compression analysis as a method to 
identify abnormal network traffic. Primarily, SCADA network 
traffic is often very repetitive with only minor differences 
between packets. This results in highly compressible data 
streams that demonstrate improved compression ratios in 



subsequent packets. However, two difficulties in using 
traditional compression techniques were identified. The first is 
that inter-dependence in the compression ratio metric between 
packets violates the use of statistical analysis needed to 
differentiate safe traffic from infected traffic. The second is that 
the packets or messages in a given communication channel or 
port compress at significantly different ratios because message 
types are of different function, form, and length.  This led to 
the development of an analysis technique that groups SCADA 
traffic by uncompressed packet size.  This provided a basis for 
comparing like message traffic. This use of data compression 
appears to have some significant merit for infrastructure 
protection. The preliminary analyses and results presented 
herein are clearly able to distinguish malicious network traffic 
from normal network traffic at the packet level with a very high 
confidence level for the conditions tested.  

II. DATA COLLECTION AND SURROGATE DATA 

A. Normal Traffict Data Set 
The normal traffic used for this research was collected from 

a production SCADA network using a mirror port on the 
networking equipment. The traffic was sorted into channels by 
service and client as defined by the server IP address, server 
port, protocol, and client IP address. The five most verbose of 
these channels were then selected for further analysis. 

B. Malicious Data Set 
In order to simulate malicious traffic, we decided to 

concentrate on identifying a particular type of exploit. Based on 
the hypotheses being tested, exploits that result in payload code 
execution would be the easiest malicious traffic to identify. 
Other types of exploits, such as spoofed values or denial of 
service (DoS) based on invalid fields, would likely not be 
identifiable using compression ratio analysis of the packet 
because the packets contents would be too similar to the normal 
packet contents. Therefore, we inserted metasploit payloads 
into packets of the otherwise normal traffic. 

III. DATA ANALYSIS 

The original concept was to use compression techniques 
to “train” a dictionary by compressing data at the packet 
level and appending the results to a dictionary that was 
allowed to grow in time.  The dictionary would be 
developed or “trained” using clean or normal SCADA 
traffic.  Then, when a malicious packet was encountered, 
it would contain unusual byte sequences and compress 
differently from the norm.  As it turns out, there were 
two problems with this initial proposed methodology. It 
appears that TCP/IP sessions are re-initialized 
periodically. When this occurs, the nature of the 
communications headers appear to change, altering the 
characteristics of the SCADA network stream. This is 
illustrated in Figure 1, which shows “compression ratio” 
for each packet as it arrives in time (sequence) for all the 
normal SCADA traffic on destination port 5026. 
Compression ratio is defined as the number of encodes 
(or dictionary entries) generated during packet 

compression divided by the overall packet size. Small 
compression ratios indicate a packet that was highly 
compressed by the LZW algorithm. 

There are several features that can be extracted from the 
data presentation in Figure 1.  First, the amount of data 
analyzed is large at over 325,000 packets. Second, although 
difficult to see in this plot, there is a startup trend in 
compression ratio where the dictionary is growing with each 
packet analyzed until the system settles into a compression 
ratio of around 0.15. Third, the settling in process receives a 
shock periodically where the compression ratios increase 
dramatically and later settle in again. These shocks are caused 
by two factors, we believe. The first factor is the arrival of a 
batch of packets that are of a new size and message content. 
The second factor appears to be associated with the 
establishment of a new session in the TCP client/server 
relationship. Fourth, it is apparent that the distribution of 
compression ratios is of a binary nature and not continuous. 
This is not surprising because packet sizes are an integer value 
and the number of encodes generated is also an integer value. 
The binary nature of these distributions becomes more apparent 
when compressing smaller packets.   

After analyzing the data from port 5026, it became apparent 
that a better way to look at the data was to plot the data as a 
function of packet size rather than by the sequence in which it 
arrived. Figure 2 shows the same data as that shown in 
Figure 1, but plotted as a function of packet byte size.  The data 
group much more naturally when presented this way; however, 
the session start-up issues identified previously are apparent 
here by the straight line grouping along many of the packet 
sizes. 

One of our desires for this project was to investigate 
statistical means to classify normal data traffic against 
malicious traffic. However, training an LZW dictionary using 
either good or malicious data violates a fundamental 
assumption of statistical analysis when attempting to classify 
data at the packet level using compression ratio as a metric. 
Statistical analysis requires that each observation is 
independent unless there is a method to calculate the 
covariance between observations. In this case, the observation 
of compression ratio (as defined by the number of encodes 
divided by the packet size in bytes) is dependent on all 
previous packets as they have been used to create the dictionary 
used in calculating encodes. 

Work sponsored by the Office of Electricity Delivery and Energy 
Reliability under DOE Contract DE-AC07-05ID14517. 

Figure 1.  Time sequence of compression ratio for port 5026. 



A. Static Dictionary Analysis Method 
A static dictionary method was proposed where a fresh or 

new dictionary was used for each packet in the data stream.  
The new dictionary was the default ASCII table normally used 
in LZW compression algorithms. This technique provided a 
basis for comparing and grouping compression ratios using 
statistical means because now each compression ratio 
calculation can be considered an independent calculation. The 
down side to this approach is that the concept of “training” the 
compression algorithm was abandoned. However, the hope was 
that there would still be enough distinction between normal 
traffic and infected traffic to differentiate them using 
compression ratio of the packet as a metric. 

The data plotted in Figure 3 were generated with each 
packet using the default start-up dictionary in the LZW 
compression algorithm. Additionally, since this provided a 
fairly tight grouping of data, a logarithmic model was fit to the 
data using a least squares algorithm to model the data. 
Compression ratio as a function of packet byte size is of the 
following form: 

CR = A + B*ln(P)

Where CR is compression ratio, A and B are coefficients 
from a least squares regression, and P is packet size in bytes. 

Figure 4 shows a plot of the source TCP port 5026 data. 
The characteristics of the source and destination data are 
similar to those shown in Figure 3, as indicated by the fit 
coefficients and standard deviation calculated for each data set. 
The fit coefficients and data for the source and destination of 
port 5026 are close enough statistically that they can be 
considered one data set/model.   

 

B. Static Dictionary Infected Data Analysis 
Analysis of normal SCADA network traffic appears to 

group well enough that it will generate a statistical model that 
has reasonably small error bounds. The next step in the 
process of defining a way to discriminate malicious traffic 
from normal network traffic was to look at how infected data 
compresses and compare it to normal SCADA traffic. Figures 
5 and 6 show compromised data sets for the destination and 
source TCP ports 5026 using a fresh dictionary for the 
compression of each packet in the network traffic stream. 
Observations and comparisons to the non-infected data 
streams are as follows: 
 

 Infected data sets are close enough statistically to be 
considered one model as evidenced by the fit 
coefficients calculated for each of the four data sets 
shown. This is consistent with the normal traffic data 
sets shown in Figures 3 and 4. 

 The compression ratios for infected data sets compared 
to normal traffic data sets are significantly different for 
packet sizes less than about 1000 bytes. For larger 
packets sizes, the difference between the two data sets 
starts to overlap statistically. This will tend to create 
large numbers of false negatives and false positive 
when trying to distinguish malicious traffic from 
normal traffic which is highly undesirable. 

 Start-up or new sessions start issues that are more 
prevalent at larger packet sizes as seen by the straight 
lines in the plots of both the normal and compromised 
data sets. 

 Although this is not shown in the data plots presented 
here, the variability in compression ratio is much larger 
for small packet sizes of less than about 70 bytes. 

 The infected data are not statistically independent from 
the normal network traffic data in this study because of 
the way the compromised data was generated (i.e., by 
inserting malicious information into existing packets). 
This should be considered a preliminary analysis and 
drawing absolute conclusions based on these data sets 
needs to be investigated more thoroughly and 
compared with independent data sets. 

 
Figure 2. Port 05026 data plotted by packet size. 

 
Figure 3.  Port 5026 Destination data with default dictionary for every packet.  

Figure 4.  Port 5026 source data with default dictionary for every packet. 



 Confidence levels grow more uncertain when the 
prediction moves away from the byte size centroid of 
the data set as seen in all the figures below. This will 
cause prediction problems when trying to distinguish 
between normal and infected data at the extreme ends 
of the predictive models. 

C. Split Packet Analysis 
Compression ratios for packet sizes of less than 300 or 400 

bytes appear to be sufficiently different between normal 
network traffic and infected traffic to categorize data as good or 
likely suspect based on statistical inferences. However, the 
difference between the normal network traffic data and infected 
network data at larger packet sizes are not sufficient to 
statistically classify the packet as belonging to either class with 
the high confidence levels needed when dealing with these 
extremely large data sets. We believe the primary reason for 
this is that the size of the injected simulated malicious software 
used for this study was 314, 247, and 341 bytes respectively for 
the exploits used. So, for initially small packets of network 
traffic, the infected portion of the packet is large. While for 
large network packets (e.g., greater than 1000 bytes) the 
infected portion of it is less than 30% of the total packet size. 
Therefore, it becomes harder to distinguish malicious network 
traffic imbedded in larger network packets based on 
compression techniques. This is simply because they are a 
smaller portion of the total packet size and do not affect overall 
compression of the packet significantly enough to distinguish 
from normal traffic. 

A scheme was devised to subdivide all network packets that 
were larger than 450 bytes and analyzed these sub-packets 
individually while attributing the analysis results to the entire 
packet. The algorithm used to break apart larger network data 

packets was to divide the total packet size by 300 and round the 
results to the nearest integer. The resulting number was used to 
break the packet in the “sub-packets.” Network packets that 
were smaller than 450 bytes were left intact by using this 
method. At 450 bytes, and larger multiples of 300 bytes, the 
network packet was subdivided into multiple sub-packets. Each 
sub-packet was compressed separately and the original packet 
was assigned a compression ratio from the sub-packet that 
provided the largest compression ratio. 

This greatly improved the ability to distinguish malicious 
data embedded in the larger network data packets while 
minimally affecting the computed compression ratios for 
normal or non-infected network traffic as shown in Figure 6.  
Figure 7 shows a plot of compression ratio data for normal 
network traffic on the destination side of port 5026 using the 
split-packet analysis method described above. Compare this 
plot to Figure 3 and it is evident that the compression ratio 
stays relatively constant after 450 bytes which is where the split 
packet algorithm starts to modify the packet analysis. Figure 8 
shows a plot of the compression ratio data for infected network 
data on the destination side of port 5026 and should be 
compared to Figure 4. These data clearly indicate the advantage 
of using the split packet analysis for larger network packets 
containing infected data. The compression ratio is nearly 
constant with a mean of about 0.82. This can be compared to 
Figure 5 where the mean of the compression ratio drops 
significantly as packet size increases. This allows a much easier 
distinction between normal and infected traffic at the larger 
packet sizes. 

 
Figure 7.  Normal traffic data plotted as a function of byte size using the split 
packet analysis for TCP port 5026 destination data. 

 
Figure 8.  Data plotted as a function of byte size for metasploit infected 
network traffic using the split packet analysis on TCP port 5026 destination 
data. 

 
Figure 5.  Metasploit infected data at TCP port 5026 destination (default 
dictionary for each packet). 

 
Figure 6.  Metasploit infected data at TCP port 5026 source (default 
dictionary for each packet). 



D. Statistical Analysis on a per Byte Size Basis 
A variation of the split packet analysis is shown in 

Figures 9 and 10, and displays the standard deviation for each 
packet size encountered during the network traffic analysis in 
which there were more than 20 occurrences of that packet size. 
For normal distribution assumptions and analysis generally 
more than 30 observations are required to derive valid statistics 
on an event. Twenty occurrences were chosen for this analysis. 
These figures provide the mean and three-sigma standard 
deviation about the mean for individual packet sizes.  
Three-sigma standard deviations include the 99th percentile of 
all occurrences within the data set. The purpose of this 
presentation was to show a potential way of training an 
algorithm by creating statistical bounds for normal and 
malicious traffic tied to packet size. Each distinct packet size 
would have an acceptable upper and lower boundary that is 
calculated in the training set. If a packet arrives that falls 
outside of the established 3-sigma boundaries it would be 
flagged as suspect. The main difference between this analysis 
and the previous split-packet analysis is that statistics are 
created at specific packet sizes rather than generating one 
model that spans the spectrum of packet sizes. 

IV. CONCLUSIONS AND RECOMMENDATIONS 
The use of compression techniques to identify malicious 

traffic on SCADA networks in real time appears to have some 
significant merit for infrastructure protection. The preliminary 
analyses and results presented herein are clearly able to 
identify malicious network traffic at the packet level at a very 
high confidence level for the conditions tested. However, the 
conditions tested are rather limited in scope and should be 
expanded into more realistic simulations of hacking events 
using techniques and approaches that are representative of a 

real-world attack on a SCADA system. Some specific 
recommendations are as follows: 

 Develop and implement a real-time software prototype 
capable of sitting on a real SCADA network and 
collect data based on known, normal SCADA traffic. 
This would allow a better characterization of the 
network traffic from both a volume and statistical 
variability aspect. This activity should be done over 
several weeks of operations at a minimum. 

 Improve the attack simulation technique employed 
such that multiple attack types can be simulated and 
that the attack proceeds along more realistic time 
events rather than infecting every packet on the 
simulated network with mal-code as was done in the 
proof of principle study. 

 Implement a simulated attack on at SCADA system 
with real end goals of system compromise by using 
known techniques used by hackers to achieve these 
goals. The goals of this effort would be characterize 
real malicious traffic and to determine if this traffic can 
be discriminated against normal traffic for real-time 
protection against an attack. 

 Repeat items one and two above for multiple types of 
SCADA systems and attack implementations as time 
and money allow. 
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Figure 9.  Normal traffic data plotted as a function of byte size using the split 
packet analysis for TCP port 5026 destination data with statistical analysis 
displayed for each byte with more than 20 data points. 

Figure 10.  Data plotted as a function of byte size for metasploit infected 
network traffic using the split packet analysis on TCP port 5026 destination 
data with statistical analysis displayed for each byte with more than 20 data 
points. 
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